A Numerical Study of Cauchy Reaction-Diffusion Equation

نویسندگان

  • Praveen Kumar Gupta
  • Swati Verma
چکیده

Abstract: In this paper, new algorithm of homotopy analysis method is successfully applied to obtain the approximate analytical solutions of the Cauchy reaction-diffusion equation. Reaction-diffusion equations have special importance in engineering and sciences and constitute a good model for many systems in various fields. Application of new algorithm of homotopy analysis method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The solutions of the problem for different generalized particular cases are presented graphically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A numerical investigation of a reaction-diffusion equation arises from an ecological phenomenon

This paper deals with the numerical solution of a class of reaction diffusion equations arises from ecological phenomena. When two species are introduced into unoccupied habitat, they can spread across the environment as two travelling waves with the wave of the faster reproducer moving ahead of the slower.The mathematical modelling of invasions of species in more complex settings that include ...

متن کامل

Numerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method

In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...

متن کامل

A new Sumudu transform iterative method for time-fractional Cauchy reaction–diffusion equation

In this paper, a new Sumudu transform iterative method is established and successfully applied to find the approximate analytical solutions for time-fractional Cauchy reaction-diffusion equations. The approach is easy to implement and understand. The numerical results show that the proposed method is very simple and efficient.

متن کامل

A numerical treatment of a reaction-diffusion model of spatial pattern in the embryo

In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...

متن کامل

Approximate Analytical Solution of Time-fractional order Cauchy-Reaction Diffusion equation

The objective of this article is to carry out an approximate analytical solution of the time fractional order Cauchy-reaction diffusion equation by using a semi analytical method referred as the fractional-order reduced differential transform method (FRDTM). The fractional derivative is illustrated in the Caputo sense. The FRDTM is very efficient and effective powerful mathematical tool for sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014